
Teaching Semantic Web Technologies
through Interactive Jupyter Notebooks

� Lars Pieschel1 ,� Sascha Welten1 ,� Lars Gleim1 , and Stefan Decker1,2

1 Databases and Information Systems, RWTH Aachen University, Germany
2 Fraunhofer FIT, Sankt Augustin, Germany

Abstract. Getting new generations of developers excited about the benefits of the
Semantic Web and familiar with the underlying technologies is one of the biggest
challenges for furthering its adoption. Inspired by the success of structured digital
learning materials in other domains of computer science, we present SemWebNote-
books, a portfolio of interactive Jupyter Notebook tutorials for teaching Semantic
Web technologies interactively. By introducing the Jupyter-RDFify plugin, we seam-
lessly integrate support for RDF and related standards into the Jupyter ecosystem.
Motivated by the overwhelmingly positive feedback provided by the students using
these materials at RWTH Aachen University and correspondingly high technol-
ogy acceptance, we release both Jupyter-RDFify and SemWebNotebooks to the
community as open source for open reuse and further collaborative improvement.

1 Introduction

In order to drive the adoption of Semantic Web technologies, it is essential to educate
new generations of developers with the underlying standards, tools, and methodologies as
efficiently as possible. While a large variety of open resources such as W3C’s technology
primers and massive open online courses (MOOCs) on the subject are already available
today, in our own experience with teaching Semantic Web Technologies to Master-level
computer science students, learners frequently struggle to apply these tools in practice. It
is our understanding that part of the underlying problem is the lack of coherently structured
interactive learning materials for a relevant intersection of Semantic Web technologies.

In order to support the learning experience of our students, we developed SemWebNote-
books, a portfolio of interactive Jupyter Notebook [3] tutorials covering RDF basics such
as CURIEs, Blank Nodes, Literals and the serialization formats Turtle and JSON-LD, the
query language SPARQL, the shape constraint language ShEx, as well as data modeling
using OWL 2. Using Jupyter’s modular architecture, we provide convenient features such
as syntax checking and RDF graph plotting directly from within the Jupyter Notebook
cells through Jupyter-RDFify, a custom-developed plugin providing a seamless learning
environment without any boilerplate code that could divert the attention of the students.
Based on the NBGrader framework [1], we enable automatic feedback and grading for
students, which reduces the teacher’s workload to a necessary minimum and increases
the time for direct student mentoring.

The remainder of this paper is structured as follows: Section 2 summarizes relevant
related work in both the Semantic Web and in other domains employing Jupyter Notebooks
to support eLearning. Section 3 details the features provided by Jupyter-RDFify, while
Section 4 summarizes its usage workflow. Section 5 presents a quantitative evaluation of
our contribution conducted in the context of our Semantic Web lecture at RWTH Aachen
University before we conclude with a short discussion of impact in Section 6.

mailto:lars.pieschel@rwth-aachen.de
https://orcid.org/0000-0001-6777-2898
mailto:welten@dbis.rwth-aachen.de
https://orcid.org/0000-0001-5570-9672
mailto:gleim@dbis.rwth-aachen.de
https://orcid.org/0000-0002-3550-1847
https://orcid.org/0000-0001-6324-7164


Background. The constant rising trend of Semantic Web technologies in different do-
mains has emerged the need for suitable courses and tools to teach the theory and practice
of Semantic Web. Semantic Web courses such as the MOOC ”Knowledge Engineering
with Semantic Web Technologies” offered by OpenHPI3 deliver the theoretical knowl-
edge needed to work with technologies such as RDF, Turtle, and SPARQL. As for the
practical knowledge, these courses offer quizzes and exemplary SPARQL endpoints or
encourage students to configure their own triple store. Especially, self-hosted triple stores
(e.g. Apache Jena Fuseki4) allow for a maximum level of customization and adjustments
according to the course contents. However, the effectiveness of these teaching strategies
suffers from the lack of sufficient interactive feedback or initial barriers induced by the
configuration of these tools.

Jupyter Notebooks5 have been proposed to lower these barriers by providing a single
exercise-sheet-style interface, which wraps a customizable and shippable backend. While
read-only text fields can provide task descriptions or further explanations, the executable
code cells enable an interactive possibility to enter and validate code according to the task
description. The methodology of using Jupyter notebooks as an educational resource6

has been employed numerous times, especially in the domain of data science [6] but also
in the Semantic Web domain [2] as a solution for interactive SPARQL queries. Another
advantage of using Jupyter notebooks as explained above is, that one can use frameworks
like NBGrader to automatically grade notebooks and generate feedback for them [1].

Nevertheless, these Notebooks conventionally rely on convoluted boilerplate code (e.g.
Python) and additional packages in order to process, e.g., the entered RDF or SPARQL
statements. The arising consequence is that the students do not get familiar with the actual
syntax yielding a distraction of the actual task or the implementation of additional features
like keyword highlighting is complicated. In our work, we circumvent the incorporation
of additional wrapper code and present a plugin for the processing of common Semantic
Web languages to enable the advantages of Jupyter Notebooks for the Semantic Web
community. The features of this plugin are part of the upcoming sections.

2 Jupyter-RDFify and SemWebNotebooks

Jupyter-RDFify (JRDF)7 enables parsing, validating, visualizing, and querying RDF
graphs directly within the Jupyter Notebook ecosystem. To ensure compatibility with
the default IPython kernel backend of Jupyter and enable the seamless handling of the
different Semantic Web technologies, we make use of Jupyter’s modular plugin and its so-
called magics system. Magics are special directives, which tell the IPython kernel that the
following line or cell does not contain python code and should thus be treated differently.
Jupyter-RDFify7 implements support for Semantic Web technologies through the IPython
extension mechanism. Once loaded, the RDF magic (%%rdf or %rdf) may be used to
control the extension through the IPython kernel. Our extension itself is built modular as
well, providing submodules for Turtle, JSON-LD, SPARQL, ShEx, etc. by interpreting
the magic like a command-line interface. The submodules use the feature-rich RDFLib7

3https://open.hpi.de/courses/semanticweb2015
4https://jena.apache.org/documentation/fuseki2
5Project Jupyter: https://jupyter.org
6For example: https://github.com/BigDataAnalyticsGroup/bigdataengineering
7Code, Documentation, and Evaluation: https://github.com/SemWebNotebooks/Notebooks

2

https://open.hpi.de/courses/semanticweb2015
https://jena.apache.org/documentation/fuseki2
https://jupyter.org
https://github.com/BigDataAnalyticsGroup/bigdataengineering
https://github.com/SemWebNotebooks/Notebooks


User
IPython

RDF
Extension

Jupyter
Interface

Interacts
IPython
Kernel

Run Cell RDF Magic RDFLib
+

Plugins

Graphviz

Use

UseOutputOutput

Fig. 1. Interaction between SemWebNotebooks components: Blue components are client-sided,
orange and green components are server-sided. The contributed RDF extension is marked in green.

Python package in combination with plugins and extensions like RDFLib-jsonld7 or OWL-
RL7 to handle the input. To visualize graphs, Graphviz7 together with its Python interface
is used. The output is then sent back and displayed to the user through the IPython kernel.
Figure 1 visualizes the interaction between these components and the Jupyter framework.

To simplify working with multiple RDF graphs, a graph can be associated with a label
upon loading it. The graphs can then be referenced by their aforementioned label at a later
stage to query or verify them. Figure 2 depicts a concrete example, in which the parsed
graph is labeled ”graph1” and then queried using SPARQL. The supported magics and
their usage are documented in the project repository7.

Working with Jupyter-RDFify and SemWebNotebooks. A sample exercise notebook
might be structured as follows: Instructors may provide an RDF graph in Turtle notation.
Due to the IPython extension, the turtle serialization can be parsed and immediately visual-
ized in the Notebook. Students are then asked to create queries, which are executed against
the earlier defined and visualized graph, in succeeding cells. Instead of a pre-defined graph
from the instructors, an experimental and interactive playground-Notebook might also
be a promising method to motivate students to create and query their own graphs without
much effort.

In our Semantic Web lecture at RWTH Aachen University, we used the above-mentioned
methods in conjunction with the NBGrader framework [1] to create a series of automati-
cally graded exercises, which we release as SemWebNotebooks. These SemWebNotebooks
combine tutorials in the form of markup paragraphs together with hands-on exercises
using our extension. A detailed overview of the covered topics can be found in the project
repository7. The learners get immediate feedback either through the output graphs or, if
their solution contains syntactic errors, through the parser errors which IPython passes
back to the user. SemWebNotebooks additionally make use of NBGrader to run unit-tests
and thus automatically grade the exercises and simultaneously generate feedback.

Jupyter-RDFify is available as open source software, can be installed through the python
package manager (e.g. Pip), and loaded into any Jupyter Python Notebook on-demand
using the predefined %load extmagic of the IPython kernel.

3



Fig. 2. Using Jupyter-RDFify: The left cell parses and visualizes an RDF graph given in Turtle
format, the right cell queries the graph parsed from the left cell and outputs the variable bindings.

3 Evaluation

Before the evaluation, we have applied SemWebNotebooks as mandatory assignments for
each participant of our Master-level Semantic Web lecture at RWTH Aachen University.
Overall, we have released six exercises7, which represent the foundation of our evaluation.
We have conducted the evaluation of our work at the end of the semester. The evaluation
was realized by an online survey distributed to each student and was structured as follows.
The first twelve questions are aligned to the Technology Acceptance Model (TAM) ques-
tionnaire [4,5]. Firstly, these questions focus on the perceived usefulness and secondly,
on the perceived ease-of-use to address the two main factors, which fuel the acceptance
of our work [5]. In the second part of the survey, we asked six more specific questions
about the auto-grading and the generated feedback. As the last item, we have provided
a free text area such that each participant was able to add individual and more advanced
feedback. The questions were answered using a Likert scale. At the end of the survey,
we received 38 responses out of 104 students who submitted at least one exercise. The
complete evaluation results and further dissection can be found in the project repository7.
The quantitative evaluation and the qualitative discussion of the results are presented in the
following based on three key questions of our survey. We further summarize qualitative
textual feedback given by our students. Here, we concentrate on three questions: I would
find SemWebNotebooks in the SemWeb course useful. (A), I would like to use Jupyter
Notebooks in other lectures as well. (B), and The automatically generated feedback was
fair. (C). Both questions (A) and (B) show remarkable results with an average score of
4.95(σ=0.23) and 4.87(σ=0.34). Question (C) however, resulted in the overall lowest
average score with only 3.56(σ=1.20). The high results of questions (A) and (B) show
not only that most students found the Jupyter Notebooks useful in the SemWeb course
but that they would also like to work with similar notebooks in other lectures as well.

The obtained quantitative feedback is also reflected in the participant’s textual qual-
itative feedback. These results show that the SemWebNotebooks are very valuable for
learners. The students especially benefit from the interactive design of each Notebook.
Further, the immediate syntax check supports the students to produce proper and compi-

4



lable code in a practical environment. Despite the mainly positive feedback, the survey
has revealed some weak points of our automatic grading system and the corresponding
provided automatically generated feedback. Although it was stated that the automatic
grading was provided rapidly, the grading was perceived as unfair because small errors
lead to bigger point losses (e.g. case sensitivity, changed prefixes) than through man-
ual corrections. This perception is particularly presented by the low score of question
(C).We have tried to compensate and mitigate these very strict assessments by manual
re-corrections for borderline cases. However, we strive to make our tool more flexible and
robust against minor syntax and discrepancies as future work.

4 Conclusion

In this work, we have presented Jupyter-RDFify, which is an IPython kernel extension
for Jupyter Notebooks. Based on the well-established magics functionality of the IPython
kernel, our plugin poses a solution to process Semantic Web-related languages in Jupyter
Notebooks. We further extend this plugin with additional packages such as Graphviz for
visualization purposes or RDFLib for querying the input data. These submodules can be
implemented according to the creator’s needs and propose a flexible method to customize
Jupyter Notebooks. We have published our plugin as open source with support for Turtle,
JSON-LD, SPARQL, and ShEx. To evaluate our work, we have applied our SemWeb-
Notebooks in combination with NBGrader to our Semantic Web course to facilitate the
interaction with Semantic Web technologies for student learners and also the assessment
of student’s assignments. Our evaluation has shown that our SemWebNotebooks increased
the learning outcome and obtained strong support from the participants. Therefore, our
work poses a promising alternative to improve the teaching of Semantic Web technologies.
In future work, we will improve auto-grading and implement support for SHACL tasks.

References

1. Blank, D.S., Bourgin, D., Brown, A., Bussonnier, M., Frederic, J., Granger, B., Griffiths, T.L.,
Hamrick, J., Kelley, K., Pacer, M., et al.: nbgrader: A tool for creating and grading assignments
in the Jupyter Notebook. The Journal of Open Source Education 2(11) (2019)

2. Gray, A.J.: Using a Jupyter Notebook to Perform a Reproducible Scientific Analysis Over
Semantic Web Sources. In: SemSci@ ISWC. pp. 12–24 (2018)

3. Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic, J., Kelley, K.,
Hamrick, J., Grout, J., Corlay, S., Ivanov, P., Avila, D., Abdalla, S., Willing, C., development
team, J.: Jupyter Notebooks – a publishing format for reproducible computational workflows.
In: Loizides, F., Schmidt, B. (eds.) Positioning and Power in Academic Publishing: Players,
Agents and Agendas. pp. 87–90. IOS Press (2016)

4. Lewis, J.R.: Comparison of Four TAM Item Formats: Effect of Response Option Labels and
Order. Journal of Usability Studies 14(4) (2019)

5. Park, S.Y.: An analysis of the technology acceptance model in understanding university students’
behavioral intention to use e-learning. Journal of Educational Technology & Society 12(3),
150–162 (2009)

6. Toomey, D.: Jupyter for Data Science. Packt Publishing (2017)

5


	 Teaching Semantic Web Technologies through Interactive Jupyter Notebooks 

