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Abstract. As Semantic Web Technologies are increasingly employed for the
management of highly dynamic data resources, e.g., the Industrial Internet of
Things, resource versioning, state synchronization and distributed data manage-
ment infrastructures are gaining practical relevance. The HTTP Memento protocol
has recently been discussed as a promising building block for the implementation
of such services for Findable, Accessible, Interoperable and Reusable (FAIR) Data.
While this standard already enables the management and discovery of persistent,
immutable and versioned resources on the Web and in Knowledge Graphs, it lacks
support for the management of data updated at high frequencies and only provides
inefficient means for managing resources with many revisions.
To address these shortcomings, we propose three extensions to the HTTP Memento
protocol: arbitrary resolution timestamps, resource creation support and range
requests for TimeMaps. We provide a reference implementation of our proposals
as open source software and quantitatively evaluate the extensions’ performance,
showcasing superior results in terms of resource capacity, insertion correctness, la-
tency and amount of transferred data. Based on a qualitative analysis, we conclude
that in conjunction with our proposed extensions, the HTTP Memento protocol
addresses a variety of data management challenges including data archiving, cita-
tion, retrieval, discovery, synchronization and sustainability for highly dynamic
data on the Web and in Knowledge Graphs, providing a promising foundation for
prospective standardized and interoperable data management solutions.

Keywords: HTTP Memento protocol · FAIR Data Management · Decentralization
· Version Management · State Synchronization. · Linked Data · RDF.

1 Introduction

Resources on the Web evolve over time and some resources change faster than others.
Handling such resources can be problematic because data cannot be referenced and cited
reliably if it changes or disappears altogether [8]. To combine the opposing require-
ments for dynamic resources and reliable citations, a suitable versioning and persistent
identification mechanism is needed, that allows to reliably capture, identify and retrieve
individual, immutable resource revisions. While semantic data management (SDM)
and versioning solutions in the Semantic Web community are largely using SPARQL,
LDP [21] or plain HTTP as their primary access mechanism, there is no standard for
managing highly dynamic resources that would allow the handling of RDF data analo-
gously to any other resource on the Web, as promoted e.g., by the FAIR principles for
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scientific data management [26]. Especially in the IoT context a joint and standardized
mechanism to handle highly dynamic data resources is missing.

The HTTP Memento protocol [19] has been successfully employed for time-based
resource access and identification in the context of SDM [9,14,20] and could provide
the basis for interoperable solutions, tightly integrated with the HTTP protocol and
therefore the core technologies of the Web. However, in its current form, the Memento
protocol was created for applications with slowly changing data in mind, such as tradi-
tional websites or library resources [19]. As such, Memento does not perform well in
scenarios with highly dynamic data resources, because it is limited by design decisions
like the use of RFC1123 timestamps [4] with a maximum resolution of one second,
limiting the frequency of data changes that can be handled. Nevertheless, the need for
standardized identification and retrieval of resource revisions also exists in applications
with highly dynamic data resources, for example in the Industrial Internet of Things,
where a large variety of different data elements, like sensor and machine data, must
be captured at high frequencies [16]. A prominent example is provided by the recently
standardized W3C Web of Things API, which promotes, e.g., the direct exposure of
current sensor readings through web resources [13]. In such a scenario, a single data
resource may describe the state of a machine or sensor, which changes multiple times
per second. While stream processing [6], as well as data propagation and notification
systems [5], have been actively investigated in recent years, the unified management
and identification of individual data points received little attention. Instead, efforts such
as the JSON Time Series data format [2] focus primarily on providing a lightweight
data-interchange format. At the same time, different approaches for versioning semantic
data were developed [15], but those often focus explicitly on RDF data and cannot pro-
vide straightforward interoperability with existing Web resources. However, especially
in the context of industrial use case scenarios, each individual state of such a resource
may need to be persistently identified and retrievable [10]. The Memento protocol is a
promising candidate to provide these services, however, currently inadequate to handle
such highly dynamic resources. Therefore, we propose and evaluate extensions to the
existing Memento protocol with the goal to provide a standardized mechanism to create,
access and identify revisions for highly dynamic data resources.

Contributions. Based on our discussion of shortcomings of the Memento protocol,
we propose three extensions to the HTTP Memento protocol:

– An updated datetime format, allowing arbitrary resolution timestamps, to uniquely
identify individual resource revisions, even at high frequencies.

– Support for Memento creation as part of the protocol, to allow clients to reliable cite
the resource revisions they created.

– Temporal range requests for TimeMaps, enabling the targeted retrieval of specific
temporal ranges of Mementos for a more efficient discovery, especially for resources
with large numbers of revisions.

We analyze the practical benefits of our proposals in a both quantitative and qualitative
evaluation, concluding them to provide a promising foundation for the standardized
management of highly dynamic data resources on the Web.

Paper Organization. The remainder of this paper is structured as follows. Section 2
provides an overview of corresponding related work and fundamental technologies.
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Section 3 discusses the proposed extensions and their benefits in detail. Section 4
evaluates the proposed extensions using our open source reference implementation.
Finally, we conclude our work in Section 5.

2 Related Work

In the following, we provide a short overview of prior work towards data versioning and
temporal data management on the Web. We then introduce the Memento protocol and
discuss its applications in data management on the Web.

WebDAV. As summarized by Whitehead [25], the WebDAV protocol and its exten-
sion DeltaV provide capabilities for remote collaborative authoring, metadata manage-
ment, version control, and configuration management of Web resources. Extending upon
HTTP, WebDAV adds operations for overwriting prevention, properties, and names-
pace management, while DeltaV builds upon WebDAV to offer versioning (checkout
and checkin), autoversioning, workspaces, activities, and configuration management.
Although both WebDAV and DeltaV are IETF Web standards, their practical adoption
remains low to date, in part due to the general complexity of the WebDAV protocol.
While Tim Berners-Lee still proposed the usage of the protocol for resource manage-
ment in his 2009 vision of Socially Aware Cloud Storage [3], the later implementation
Solid [17] instead implements the Linked Data Platform specification [21] standardized
by the W3C in 2015.

The Memento Protocol. A more recent and much simpler approach to resource ver-
sioning is provided through the HTTP Memento protocol [18], which enables the retrieval
of Mementos – historic states of resources – via time-based HTTP content-negotiation.
As summarized by Gleim and Decker [9], the Memento framework distinguishes four
logical components: Original Resource, Memento, TimeGate, and TimeMap. A Me-
mento 〈u, t〉 captures the state of an Original Resource with URI u at a given point in
time t (exposed via the Memento-Datetime HTTP header). Mementos are intended
to be immutable and may optionally be associated with one or more distinct Memento
URI(s) for referenceability. Such a URI-M must further identify the URL of its Original
Resource in an HTTP Link header. Using the Accept-Datetime HTTP request header,
historic states of Original Resources may then be requested from a so-called TimeGate
through time-based content-negotiation, and are serviced through either a direct HTTP
response or HTTP redirection to external archive locations, providing a simple solution
to the archiving problem.

Additionally, the Memento protocol also enables revision discovery and synchro-
nization through TimeMaps, which provide a listing of available Mementos 〈b, t*〉 at
points in time t* for a given Original Resource b, i.e., a history of available revisions
with respective associated distinct Memento URIs. Thus, exposing up-to-date TimeMaps
for resources enables trivial change monitoring and the discovery, retrieval, and thus
synchronization of resource state.

Depending on the application scenario, TimeGate, TimeMap, and/or Mementos may
all be provided by the Original Resource provider. It is, however, similarly possible to
deploy all components independently of each other, as well as with optional redundancies.
Notably, third parties may also provide archiving services by storing Mementos and/or
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providing lookup services (i.e., an external TimeGate) for resources from other domains,
such as already provided by archive.org. Thus, adoption does not hinge on the support of
any individual group or organization but may be adopted by interested users in backward
compatibility with existing resources on the Web. Individual Mementos may further
be resolved to multiple URI-Ms, i.e., different storage locations, (e.g. via TimeMaps),
supporting explicit redundancy. Further details, including discovery procedures for
TimeGates, Mementos and Original Resources, can be found in RFC7089 [18].

Data Management with the Memento Protocol. In the following, we shortly in-
troduce prior work exploring the application of the Memento protocol in the context
of data management solutions. Meinhardt et al. [14] proposed a system for the man-
agement of Linked Data enabling access to arbitrary historical data states through the
Memento protocol. The authors further implemented a custom REST API to enable
incremental updates to the underlying RDF data. Due to its reliance on custom API
endpoints, the approach is however not well suited for applications with arbitrary Web
services. Verborgh [24] described an approach employing the Memento protocol to query
historical datasets using the SPARQL query language. Taelman et al [22] then adopted
the approach for historical access to linked data through the Triple Pattern Fragments
API. Extending upon these approaches, Vander Sande [23] proposes an integrated data
publishing solution for libraries, providing historical access to Linked Data through
various access mechanisms. Anderson [1] proposed the Dydra graph store which imple-
ments temporal RDF dataset versioning analogously to the Memento TimeGate pattern.
Nevertheless, none of the presented approaches consider the specific requirements of
highly dynamic data resources. In recent work, Gleim and Decker [8] conclude that the
Memento protocol provides a promising solution for the archiving, citation, retrieval,
discovery, synchronization and sustainability challenges of data management, however,
its shortcomings w.r.t. highly dynamic data resources remain unresolved to date.

3 Optimizing the Memento Protocol

In the following section, we propose multiple, independent extensions to the existing
Memento protocol, with the goal to enable support for highly dynamic data resources.
First, we introduce an example use case based on an industrial scenario to highlight the
need for Memento protocol extensions to better support highly dynamic data resources.
Motivated by this use case, we propose the adoption of the RFC3339 datetime format [12]
which supports arbitrary time resolution, instead of the currently used RFC1123, which is
limited to a resolution of one second. Subsequently, we propose to broaden the scope of
the Memento protocol beyond pure data retrieval and extend it to support the creation of
resources and their revisions via PUT and POST, as well. This especially enables clients
to reliably and persistently cite individual resource revisions immediately upon creation.
Finally, we propose a ranged request for TimeMaps, which enables clients to retrieve
arbitrary sections of a TimeMap with a single request, reducing the communication
overhead associated with large TimeMaps commonly associated with highly dynamic
resources.

Use Case. To highlight the need to extend the Memento protocol towards highly
dynamic resource support, we introduce the example use case illustrated in Figure 1.
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Fig. 1. An example highlighting the need for HTTP extensions to handle highly dynamic resources.

We will refer to this use case in the following sections to motivate individual Memento
extensions. Our use case considers a production machine in an industrial IoT setting,
which can be observed via multiple sensors writing their data to a Web server via HTTP
PUT or POST requests with high frequency, possibly following the Linked Data Platform
specification [21]. In the following, we refer to this Web server as the Memento Server.
Each sensor writes to a single resource and each revision of such a resource (stored and
subsequently retrievable as a Memento) reflects a specific sensor value, i.e, the state of a
sensor at a specific point in time. The use case also consists of multiple reporter processes.
These software components consider a certain range of Mementos associated with certain
sensor resources to create reports indicating the state of the machine. A reporter process
first creates a full report with all relevant information, by updating a resource on the
Memento server. The reporter process also creates a short summary of this report directly
after the full report is created. To maintain useful provenance information, each summary
also references the full report it was generated from. Finally, since the machine produces
safety-critical parts, regulated by the government, the summary of the report is also
stored externally on a government archive server.

3.1 Changing the Datetime Format

The Memento protocol relies on timestamps to provide access to naturally ordered
resource revisions via datetime negotiation or TimeMaps. These timestamps follow
the RFC1123 [4] format, which provides a static resolution of one second. However,
in industrial applications like the use case illustrated in Figure 1, we consider sensors
updating resources multiple times per second, each change leading to a Memento that
needs to be identifiable. The RFC1123 timestamps cannot uniquely identify multiple
revisions that occur within the same second and timestamp collisions are unavoidable
for high-frequency data. Therefore, we propose a revision to the Memento protocol that
changes the format of the timestamps to the more modern and flexible RFC3339 [12].
RFC3339 standardizes the use of datetime formats based on ISO 8601 [11] for use in
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internet protocols and allows the representation of fractions of seconds with arbitrary
precision. The use of RFC3339 in the Memento protocol would allow the natural ordering
of resource revisions with an arbitrarily small distance to each other. While computer
systems only provide timestamps with a finite resolution, the RFC3339 format would
allow the protocol to be used on current systems with the highest possible resolution, as
well as with future systems, which may provide an even higher timestamp resolution.
Additionally, for most applications, the uniqueness of a timestamp is more important
than its actual accuracy. Therefore, even systems with lower resolution timestamps can
profit from the additional resolution allowed by the RFC3339 format by simply using the
least significant digits as a counter to guarantee the uniqueness of identifiers assigned in
the same timestamp interval. While these virtual timestamps are not accurate timestamps
up to the least significant digits, they provide uniqueness and natural ordering while
still expressing time information with the highest possible precision. Since RFC3339
allows arbitrary fractions, the size of the counter can be chosen to fit the needs of the
application. For the considered use case, the use of RFC3339 would allow the sensors to
send with an arbitrary frequency, without losing the unique identifiability of individual
Mementos.

3.2 Considering Resource Creation

In our use case, we need to consider reporter processes, which revise two resources,
the full report and its summary. The summary additionally links to the full report,
establishing useful provenance information. To do so, the reporter process needs to learn
the unique identifier of the full report, before it can create the summary. Additionally,
there may be multiple reporter processes writing to the same resources. Using the
Memento protocol, the unique identifier may be obtained by combining the URI of
the resources with the Memento-Datetime [9], which is assigned by the server. Since
the Memento protocol does not consider the creation of resources via HTTP PUT or
POST, there is no standardized way for the client to learn the Memento-Datetime that
was assigned to the Memento it created. While the most recent Memento-Datetime
may be obtained using an additional GET request to the resource created using PUT or
POST, this poses multiple problems. First, following each PUT or POST request with a
GET request creates unwanted overhead. Additionally, since multiple clients may write
to the same resource, race conditions may occur and it cannot be guaranteed that the
returned Memento-Datetime is actually associated with the Memento created by the
requesting client, as illustrated in Figure 2. In our use case, this would lead to a summary
that references the wrong full report. Instead, we propose the extension of the Memento
protocol to also consider the creation of Mementos through RESTful APIs by reusing
the existing Memento-Datetime header as a response header in the context of PUT
or POST requests. The server may then further indicate the location that the created
resource may be retrieved from through the HTTP Content-Location header. Note,
that this approach may be implemented in a backward-compatible manner with arbitrary
REST endpoints (as long as they internally guarantee, that individual resource revisions
are unique). The Memento protocol considers different scenarios where TimeGates,
Original Resources and Mementos may exist distributed across different servers or
may be handled by the same entity. We also consider different cases for the creation
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Fig. 2. The necessary requests for Memento creation with and without the proposed extension.
The extension avoids additional requests and race conditions, which may lead to wrong datetime
associations at the creating client, by returning the assigned Memento-Datetime directly with
the response to a request.

of Mementos. However, we always assume that an Original Resource acts as its own
TimeGate and assigns unique Memento-Datetimes to each resource revision. After a
Memento has been created by the Original Resource it may be handed over to another
Memento server for storage.

Creating Mementos through the Original Resource. In the centralized case, the
Original Resource (OR) also acts as its own TimeGate. We propose the standardization
of PUT and POST requests towards the Original Resource. To create a new revision of the
Original Resource, a client may issue a PUT or POST request to the OR. If the request is
successful, the current representation is updated to the new revision and a new Memento
is created. The server communicates the unique identifier it assigned to the Memento via
the Memento-Datetime header. While the classic Memento protocol already specifies
the Memento-Datetime response header, its exact meaning is clear from the type of
the request. Used as a response to a PUT or POST request, the Memento-Datetime

header communicates that the content of the request has been persisted with the returned,
unique timestamp. This proposed additional response header allows clients to directly
and reliably reference the resource revisions they created, as illustrated in Figure 2.

To achieve the desired immutability for reliable citations, a DELETE request may
only create a tombstone object. The current representation of the resource would act like
a deleted resource, while the existing Mementos remain available.

Storing Mementos in an external Memento Archive. Our example use case also
requires the reporter process to hand over the summary reports to an external archiving
service provided by the government. To store already existing Mementos at an external
TimeGate, we propose the utilization of an archiving endpoint (URI-A). This archiving
endpoint consists of the URI of the Memento server, but also encodes the URI-R of
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204 No Content

memento-datetime = T1
content-location = URI-R

Location = URI-M

Fig. 3. The proposed process of storing an existing Memento at an archiving server that is not
holding the associated OR. The client passes the Memento-Datetime as a header and encodes
the location of the OR as part of the URI-A. The server responds with the new Memento location.

the Original Resource in its path. The archiving endpoint may exist at an arbitrary
location on the server, which should be discoverable via a well-known location, e.g.,
http://archive.tld/.well-known/memento-archive-location/. At this lo-
cation, clients can learn the actual archive endpoint, e.g. from a JSON representation
such as {"archive location":"http://archive.tld/archive-endpoint"}.

This way, Memento archiving services provide a clearly specified location that stores
and provides access to Mementos belonging to other Original Resources, which may
exist in parallel to Original Resources the archiving service maintains itself. Encoding
the URI-R as part of the URI-A instead of a separate request header enables a unique
endpoint for each OR which acts as a TimeGate for that OR and may even provide
resource-specific human-readable information at that location, such as the TimeMap in
HTML format. To store a Memento, we reuse the already existing Memento-Datetime,
as illustrated in Figure 3. Used as a request header, the Memento-Datetime indicates
the unique Memento-Datetime that the OR assigned to the Memento in the request at
its creation. The archiving endpoint responds with the URI-M identifying the storage
location of the Memento. Note, that Memento-Datetime header is used as a request
header instead of a response header. Similar to the creation of Mementos at the OR, the
semantics of the header is implied by the type of the associated request.

The ability to store Mementos at external archiving services in a standardized way
allows for the realization of simple push-based resource state synchronization mech-
anisms and redundant resource archiving, both of which are relevant challenges for
data management solutions on the Web. With regard to our use case, the extension for
resource creation allows the reporter processes to reliably reference the full reports
from their summaries and to create synchronized copies of the summaries at an external
archiving service.

3.3 Range Requests for TimeMaps

In the considered use case, sensors create resource revisions with high frequency. There-
fore, a single resource is expected to have a large number of revisions. The reporter
processes in this use case are only interested in a specific range of Mementos, i.e., the
Mementos that were created since their last execution. The Memento protocol specifies
TimeMaps, listing the Mementos for a resource known to the TimeGate that provides
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Fig. 4. Comparison of retrieval methods for TimeMap fragments. A complete TimeMap always
returns every fragment with a single request, but for large TimeMaps, this is inefficient. Linearly
paging through TimeMap fragments transmits fewer data per request, but may require many
requests. The proposed range-request returns only the requested range of Mementos with a single
request.

the TimeMap. If many Mementos exist, as is the case in our use case, this TimeMap may
be long and difficult to handle. However, the clients in our use case are not interested in
the full TimeMap, but only in a specific fragment.

The classic Memento protocol provides a paging mechanism, which divides the
TimeMap into pieces that can be accessed separately, where each page also points to
its predecessor and its successor. Since the URI format identifying the individual pages
is not standardized, the TimeMap can only be paged linearly, without skipping ahead
or even searching for a certain time range by performing a binary search. Therefore, if
a client is looking for a range of Mementos at the end of the TimeMap, the complete
TimeMap is downloaded and many requests are necessary to reach the desired part
of the TimeMap, which creates a huge overhead for resources with many Mementos.
Additionally, the client may need to combine the results from multiple pages locally and
remove parts of the first or last page that do not match the target range. The Memento
protocol also specifies Index TimeMaps, which only contain links to other TimeMaps
and a datetime range that is covered by each linked TimeMap. Index TimeMaps can
again point to other Index TimeMaps. However, Index TimeMaps are primarily intended
for distributed TimeMaps across multiple archives. While this mechanism can be used to
create tree structures of TimeMaps that guide clients to a specific range of Mementos
without sending the complete TimeMap, it still requires the client to request multiple
TimeMaps and assemble the results from these requests to obtain the intended range of
Mementos. Therefore, Index TimeMaps are not considered further. Instead, we propose
a new header that clients could use to request a specific range of a TimeMap, the
Accept-Memento-Range header. Unfortunately, RFC3339 does not cover time periods,
but they are specified by ISO 8601, for which RFC3339 is a profile. Therefore, we utilize
the time period syntax of ISO 8601, more specifically its explicit syntax for periods that
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connects two timestamps with a forward slash, e.g., iso-date-time-start / iso-date-time-
end. Semantically, this indicates the time period between both timestamps. In a future
standardization effort, the Accept-Memento-Range header may also be realized by
creating a datetime unit for range requests following RFC 7233 [7].

In our use case, the reporter process may set the Accept-Memento-Range header
with the desired time period of the presented format to request a fragment of a TimeMap
which only covers the relevant time period. To maintain compatibility with legacy servers,
a Memento client must be able to fall back to a regular TimeMap request, if the header
is ignored by the server.

3.4 Ensuring Compatibility with Legacy Systems

While proposing changes to an existing and established protocol, the implications for
the compatibility with the existing protocol revision also need to be considered. Most
of the proposed changes can be implemented as an extension, without any impact on
existing Memento implementations. The additional request headers for the creation of
Mementos or the retrieval of TimeMaps would only be used by a client compatible with
the Memento extension. A legacy server would simply ignore the unknown headers
and a compatible client must handle a legacy response. Similarly, a modern server
may choose not to implement individual extensions to keep its complexity low and a
client also needs to handle any combination of enabled extensions. If the server uses
extensions, incompatible clients would simply ignore the additional response headers
that are returned for HTTP PUT or HTTP POST requests. Therefore, these extensions
would not break the existing Memento infrastructure.

However, the datetime format used by the Memento protocol cannot be changed
without breaking compatibility with legacy systems. To address this problem, the up-
dated datetime format could be implemented as an extension as well, using an ad-
ditional header, the Memento-Version header. If the client initiates a request with
Memento-Version=2, the server has to use RFC3339 timestamps for its responses,
if the extended Memento protocol is supported. This holds for TimeMaps as well as
Memento-Datetime headers. If the client does not set this header, the server acts as a
legacy server and uses RFC1123 for the datetime format in its responses. The use of
RFC1123 timestamps may lead to ambiguous identification of Mementos, as previously
discussed. In that case, the server may use an arbitrary but consistent reduction and
ignore additional Mementos in interactions with legacy clients, e.g., the server may
only list and return the first Memento that was created within a certain second. If this
behavior is undesirable, the server may also reject legacy requests. If a client wants
to use the RFC3339 datetime format for its requests, using the Accept-Datetime

header, it may not know if the server supports that extension. Therefore, the proto-
col extension must ensure that such an interaction can fall back to classic Memento.
This could be achieved by sending two request headers with the initial request. The
Accept-Datetime header uses the RFC1123 format with reduced resolution and an
additional header, Accept-Datetime-2 for example, specifies the RFC3339 datetime.
If the server does not support the extension, it will ignore the second header and the
client needs to handle the legacy response, which can be identified by looking at the
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format of the Memento-Datetime. Otherwise, the server supports the extension and
the client may send subsequent requests without the legacy headers.

The proposed extensions further maintain HTTP idempotence of all requests. While
range request and increased timestamp accuracy clearly have no impact on idempotence,
creating Mementos through the Original Resource creates a new Memento with user-
provided content and server-assigned Memento-Datetime for each PUT/POST request.
It is therefore idempotent w.r.t the latest resource state itself, even though the header
is updated. Storing Mementos in a third-party Memento Archive is always idempotent,
both w.r.t. the resource state and its Memento header. Therefore, from the viewpoint of
the “non-Memento-aware” Web, all described methods are idempotent.

Together, the proposed changes enable the Memento protocol to be used for data
management in high-frequency environments, where every revision of a resource has to
be captured, while also maintaining compatibility to legacy systems.

4 Evaluation

To evaluate the proposed extensions to the Memento protocol, we implemented a minimal
Memento server as a Node.js (v14) application with an in-memory Redis backend (v6),
which we released as open source software3, and evaluate its performance using a
single-node deployment of the server application and a client on a workstation with
Intel i7-8700K CPU, 64 GB of RAM and NVMe SSD. The goal of the Memento
server implementation used for the evaluation was not to provide a highly scalable
application but to compare the proposed extensions with the classic Memento protocol.
The repository also contains a written description of the implementation details.

We conducted two separate experiments. The first experiment evaluates the use of
the RFC3339 datetime format, as well as the benefits of using Memento in the context
of resource creation. The second experiment evaluates the proposed range request for
the retrieval of Memento TimeMaps. All created resources in both experiments contain
random strings of length 20. All plots reflect the averaged result over 10 repetitions of
the associated experiment. The error bars indicate the 99% confidence interval.

4.1 Experiment 1 - Inserting Resource Revisions

First, the performance of the Memento-Datetime response header for PUT and POST

requests to the OR is evaluated experimentally in combination with the updated times-
tamps in RFC3339 format. In this experiment, the OR acts as its own TimeGate. We
assume an application in which the client needs to reference the exact resource revision
it created and therefore needs to learn the unique Memento-Datetime assigned to its
revision. Clients create revisions of a single OR using PUT requests to that resource,
with different frequencies. The server creates a Memento for each request, assigns
unique RFC3339 timestamps and directly returns them via the Memento-Datetime

header with the response. An insertion is only considered successful if the server assigns
a unique identifier for the inserted resource revision and the client learns the correct
identifier so it can reference the associated resource revision.

3 https://git.rwth-aachen.de/i5/factdag/memento-server
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In the first variation of that experiment, the client ignores the returned Memento-

Datetime header and issues a subsequent GET request to learn the Memento-Datetime
header. This emulates a scenario with the use of high precision RFC3339 timestamps, but
without the Memento-Datetime header for PUT or POST requests. In the second varia-
tion, the client considers the returned Memento-Datetime header to learn the assigned
Memento-Datetime and does not issue a subsequent GET request. The correctness
of insertions with the third variation, the classic Memento protocol with RFC1123
timestamps and without the Memento-Datetime response header is not determined
experimentally. Instead, the best-case scenario of one correct insertion per second is
plotted based on the availability of timestamps and the pigeon-hole principle. Note, that
due to effects like jitter or processing delay, requests may collide for a unique timestamp
in one second, while the timestamp provided by the following second is not used at all.
Therefore, the classic Memento protocol may perform worse in practice, especially for
comparably low frequencies of around 1 revision per second.

Correctness of Insertions. Figure 5a plots the percentage of successful insertions
for different loads (insertions per second) on the server for the classic Memento protocol,
the extended protocol and a hybrid with RFC3339 timestamps but without the resource
creation extension and its response headers respectively. In the case of classic Memento,
due to the limited timestamp resolution, only a single revision gets a unique identifier
per second. That limits the effective load on a single resource to one insertion per second.
Otherwise, most of the insertions cannot be uniquely identified. If RFC3339 timestamps
are used, but the associated timestamp is not returned with the response to a POST or
PUT request, the client must issue a subsequent GET request to learn the exact timestamp.
However, between the POST request and the GET request, another insertion may have
taken place on the same resource, as illustrated in Figure 2. In that case, the client learns
a timestamp associated with the wrong resource revision. This is increasingly likely for
high loads on a single resource. The client checks if the correct timestamp was returned
by comparing the inserted resource content with the returned content. If the contents
match, the insertion is considered successful otherwise the insertion failed. For the
extended Memento protocol, the timestamp associated with an insertion can be learned
directly from the response to a POST or PUT request and a subsequent GET request is not
necessary.

Performance. The previously presented results show increased correctness for the
creation of resource revisions with the extended Memento protocol, but the performance
of such creation events is important as well. The experimental results in Figure 5b show,
that the extended Memento protocol is faster for creation events if the client needs to
learn the unique identifier of the created resource revision. While the performance of our
Memento server implementation could likely be significantly optimized, performance
degradation over a certain threshold is to be expected from any implementation. The
significant performance drop observed above roughly 1500 requests per second does
not hinder the direct comparison of the protocol performance itself. The plot shows that
the used implementation can handle twice as many creation events per second if the
extended Memento protocol is used, before the time to completion increases notably.
These advantages are due to the need for a client to send a subsequent GET request to
learn the most recent Memento-Datetime. Therefore, each creation event consists of
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Fig. 5. Results of Experiment 1, comparing the extensions to the classic Memento protocol
regarding correctness and performance of citable resource revision insertions.

a PUT or POST request, followed by a GET request. This roughly doubles the load on
the server and increases the time to complete the operation for the client, because two
sequential requests need to be issued to the server. Since we execute requests against
localhost, the impact of network latency on our results is negligible. Increased network
latency would impact the traditional Memento protocol (with one or multiple requests)
equally or more than our proposal (with only a single request for both Memento creation
and TimeMap retrieval). An evaluation with larger resources (compared to the current
20 character strings) would effectively add the same transmission time offset for either
protocol version since this affects the initial PUT/POST request time equally for both
protocol versions. Subsequently, the relative overhead of the second request diminishes as
larger resources are transferred. Nevertheless, the absolute overhead remains effectively
unchanged, since an additional round trip is needed in the traditional protocol.

The evaluation of this experiment shows that the use of RFC3339 timestamps with
Memento allows the assignment of unique identifiers to resource revisions even for
highly dynamic resources, which is not possible with the currently used RFC1123
timestamps. The experiment also shows that timestamps with a high resolution alone
are not sufficient in applications that require the creating client to reference the exact
revision it created. Instead, the protocol also needs to consider the creation of resource
revisions and directly notify the client of the unique identifier that was assigned to the
revision. With both proposed protocol extensions combined, the correct assignment and
referencing of resource revisions is guaranteed even for highly dynamic data resources,
while reducing the overhead generated by additional requests in applications that require
reliable references to specific resource revisions.

4.2 Experiment 2 - Accessing TimeMaps

The second experiment considers the proposed extension to the retrieval of TimeMaps,
namely the Accept-Memento-Range header. To evaluate its performance, and compare
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Fig. 6. Processing time for retrieving 100 consecutive entries in a varying position from a TimeMap
with 10 000 entries. Retrieving the whole TimeMap always requires the same time, but produces
overhead, because the TimeMap is larger than the target range. Linearly paging through the
TimeMap with 100 entries per page varies in its duration based on the position of the target range.
The proposed datetime-range request results in a consistently low processing time for the client.

it to the already standardized methods of retrieval, we create a resource with 10 000
revisions and set up a client to retrieve a subset of revisions based on a given datetime-
range which includes 100 Mementos. The position of the targeted Mementos is varied
with each execution so that the first execution needs to isolate the entries on positions 0
to 99 and the last execution targets the entries on positions 9900 to 9999 of the TimeMap.
The experiment is executed for the retrieval of a full TimeMap, for the retrieval via a
paged TimeMap and for retrieval via the proposed range request, respectively. For each
execution, the processing time is measured. In the case of a full TimeMap, that includes
the time for the request and the response itself, as well as the time the client spends
to identify the targeted elements from the TimeMap. Similarly, in the case of a paged
TimeMap, the processing time includes the time for the individual requests, as well as
the time the client needs to evaluate if a page lists some or all of the targeted Mementos
and the time to create the final list, which may consist of fragments combined from
multiple pages. The results plotted in Figure 6 show that the processing time to retrieve
a segment of a TimeMap is constant if the full TimeMap is retrieved and the desired
segment is isolated by the client. On the other hand, the processing time for the retrieval
of a segment via a paged TimeMap depends on the position of the segment within the
TimeMap. If the segment is at the beginning of the TimeMap, the paged approach may
be faster than the retrieval of the complete TimeMap. However, since the client needs to
page through the TimeMap page by page, the processing time increases linearly if the
position of the target range is moved towards the end of the TimeMap. If the target range
is at the end of the TimeMap, the processing time for a paged TimeMap is considerably
higher than for the retrieval of a full TimeMap, because increasingly many pages need
to be requested. Like the retrieval via a complete TimeMap, the processing time for
retrieval via a range request is independent of the position of the target range within the
Map and can be completed with a single request. Since the transmitted amount of data
may be considerably smaller depending on the relation between map size and range size
(1/100 of the user data with the chosen example) the processing time for a range request
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is lower compared to the retrieval of the full TimeMap. While the retrieval via pages
may have similar processing times, this is only possible if the desired range is towards
the front of the Map.

Note, that the exact results heavily depend on the size of the TimeMap and the size of
the target range in relation to the size of the TimeMap and this experiment only considers
a single combination of those parameters. However, the provided data does clearly show
how the range request for TimeMaps can have a positive impact on the communication
overhead and the processing time for the client. At the same time, depending on the
implementation, the range request may increase the computational load on the server,
especially compared to statically cached TimeMap pages. Since the extension is optional
for the server, it may decide to deactivate this extension if computational resources are
limited.

5 Conclusion

In this work, we proposed three independent extensions to the HTTP Memento pro-
tocol to address its current shortcomings with respect to the management of highly
dynamic data resources, such as increasingly prevalent in the Web through the influence
of Industrial Internet of Things technologies. We specifically propose the following
modifications: a) An updated datetime format, allowing arbitrary resolution timestamps,
to uniquely identify individual resource revisions, even for highly dynamic resources.
b) Support for Memento creation as part of the protocol, to allow clients to reliable cite
the resource revisions they created. c) Temporal range requests for TimeMaps, enabling
the targeted retrieval of specific temporal ranges of Memento TimeMaps for the more
efficient discovery of resource revisions, especially for highly dynamic resources with
large numbers of resource revisions.

Based on respective quantitative performance evaluations and qualitative analysis
in the context of a concrete usage scenario in the context of industrial sensor data
management, we demonstrated the superior performance of all three proposals for the
management of highly dynamic data resources compared to the plain Memento protocol.
Notably, we were able to improve both the performance and correctness of Memento
creation and were able to significantly reduce the amount of transferred data and required
processing time for Memento discovery through TimeMaps.

Our open source reference implementation of the proposed extension allows for the
immediate evaluation of our proposal by the community and may serve as a foundation
for future work. We conclude that in conjunction with our proposed extensions, the
Memento protocol addresses a variety of data management challenges including data
archiving, citation, retrieval, discovery, synchronization and sustainability for arbitrary
and highly dynamic data on the Web and in Knowledge Graphs, providing a promising
foundation for prospective standardized and interoperable data management solutions,
e.g., in conjunction with the Linked Data Platform specification, which we plan to pursue
in future work.
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