
SchemaTree: Maximum-Likelihood Property
Recommendation for Wikidata

Lars C. Gleim1(B) , Rafael Schimassek1, Dominik Hüser1, Maximilian Peters1,
Christoph Krämer1, Michael Cochez2,3 , and Stefan Decker1,3

1 Chair of Information Systems, RWTH Aachen University, Aachen, Germany
{gleim,decker}@dbis.rwth-aachen.de

2 Department of Computer Science,
Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

m.cochez@vu.nl
3 Fraunhofer Institute for Applied Information Technology FIT, Sankt Augustin, Germany

Abstract. Wikidata is a free and open knowledge base which can be read and
edited by both humans and machines. It acts as a central storage for the struc-
tured data of several Wikimedia projects. To improve the process of manually
inserting new facts, the Wikidata platform features an association rule-based tool
to recommend additional suitable properties. In this work, we introduce a novel
approach to provide such recommendations based on frequentist inference. We
introduce a trie-based method that can efficiently learn and represent property
set probabilities in RDF graphs. We extend the method by adding type infor-
mation to improve recommendation precision and introduce backoff strategies
which further increase the performance of the initial approach for entities with
rare property combinations. We investigate how the captured structure can be
employed for property recommendation, analogously to the Wikidata Property-
Suggester. We evaluate our approach on the full Wikidata dataset and compare its
performance to the state-of-the-art Wikidata PropertySuggester, outperforming it
in all evaluated metrics. Notably we could reduce the average rank of the first
relevant recommendation by 71%.

Keywords: Wikidata · Recommender systems · Statistical property
recommendation · Frequent pattern mining · Knowledge graph editing

1 Introduction

Wikidata is a free and open knowledge base which acts as central storage for the struc-
tured data of several Wikimedia projects. It can be read and edited by both humans
and machines. Related efforts are schema.org [15] and Linked Open Data1 [7]. Man-
ual editing of knowledge-bases is traditionally an error prone process [23] and requires

1 We provide additional results for the LOD-a-lot dataset [12] together with our implementation
in the supplementary material at https://github.com/lgleim/SchemaTreeRecommender.

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foun-
dation) under Germany’s Excellence Strategy – EXC-2023 Internet of Production – 390621612.

c© Springer Nature Switzerland AG 2020
A. Harth et al. (Eds.): ESWC 2020, LNCS 12123, pp. 179–195, 2020.
https://doi.org/10.1007/978-3-030-49461-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49461-2_11&domain=pdf
http://orcid.org/0000-0002-3550-1847
http://orcid.org/0000-0001-5726-4638
http://orcid.org/0000-0001-6324-7164
https://github.com/lgleim/SchemaTreeRecommender
https://doi.org/10.1007/978-3-030-49461-2_11

180 L. C. Gleim et al.

intimate knowledge of the underlying information model. Even entities of semantically
equal type regularly feature different property sets (also called the attributes or predi-
cates of the entity in the context of RDF [8]), different property orderings, etc. [9].

For Wikidata, much care is taken to create useful properties, which have support
from the community2. Nevertheless, due to the sheer number of available properties,
users often struggle to find relevant and correct properties to add to specific entities of the
knowledge base. In order to improve the process of manually incorporating new facts into
the knowledge base, the Wikidata platform provides the PropertySuggester tool, which
recommends suitable properties for a given subject using an association rule-based app-
roach [25]. Similar recommendation approaches are also employed in more general RDF
recommender systems and collaborative information systems [1,2,13,22,26].

The main contribution of this work is the SchemaTree in which we make use of
frequentist inference to recommend properties; in particular using a compact trie-based
representation of property and type co-occurences. We also detail how the approach qual-
itatively differs from the existing association rule-based approaches, investigate cases in
which the baseline SchemaTree does not perform well, and present respective improve-
ment strategies. The results in Sect. 4 show that the recommender performs well on the
Wikidata dataset and significantly outperforms the current Wikidata PropertySuggester.

In the following, we first introduce relevant related work in property recommen-
dation systems and frequent pattern learning and discuss potential limitations of these
existing systems, before detailing the construction of the SchemaTree and its applica-
tion to property recommendation. Afterwards, we present an extension of the baseline
SchemaTree incorporating type information into the system in Sect. 3 and present back-
off strategies to deal with specific cases in Sect. 3 to improve precision and recall further.
Subsequently, we evaluate the performance of the proposed approach against a state-of-
the-art approach and its applicability to scale to large RDF datasets, before summarizing
our results and concluding our work.

2 Related Work

Several data-driven property recommendation systems have been introduced in recent
years. In the context of databases and the Web, there are several examples of works
which suggest schema elements to designers. As an example, Cafarelle et al. [10] pro-
pose the attribute correlation statistics database (AcsDB), which enables property sug-
gestion based on their cooccurences in web tables, assisting database designers with
choosing schema elements. Other examples include [5,18].

Also in the context of structured knowledge bases and the Semantic Web, sev-
eral approaches have been proposed. Many of these are fundamentally based upon the
idea of mining association rules [4] from sets of co-occurring properties. Motivated by
human abstract association capabilities, association rule-based recommendation hinges
on the following underlying rationale: If a number of properties co-occur frequently,
the existence of a subset of those properties allows for the induction of the remaining
properties with a certain confidence.

2 See for example the discussion at https://www.wikidata.org/wiki/Wikidata:Requests for com-
ment/Reforming the property creation process.

https://www.wikidata.org/wiki/Wikidata:Requests_for_com-ment/Reforming_the_property_creation_process
https://www.wikidata.org/wiki/Wikidata:Requests_for_com-ment/Reforming_the_property_creation_process

SchemaTree: Maximum-Likelihood Property Recommendation for Wikidata 181

A first example of such work is by Abedjan et al. [1,2], whose RDF enrichment
approach employs association rule mining for property suggestion. In their work, rec-
ommendations are ranked by the sum of the confidence values of all association rules
that respectively entailed them. That work got extended into the Wikidata recommender,
which is called PropertySuggester3. The difference with the basic approach is the intro-
duction of so-called classifying properties, which are the properties instanceOf and
subclassOf [25]. Subsequently, association rules are not only derived based on the co-
occurrence of properties but also on which properties occur on which types of instances,
providing additional information for the recommendation computation process.

The Snoopy approach [13,26] is another property recommendation system based
on association rules, which distinguishes itself from previous systems by ranking rec-
ommendations based on the support – i.e., the number of occurrences of a given rule
– across all training data items (in contrast to the sum of confidences used in the pre-
vious approaches). Zangerle et al. [25] proposed an extension of the Snoopy approach,
inspired by previous work of Sigurbjörnsson et al. [22]. They rank properties by the
number of distinct rules that respectively entail them and their total support as a proxy
for including contextual information into the ranking process. Zangerle et al. [25] fur-
ther conducted an empirical evaluation of several state-of-the-art property recommender
systems for Wikidata and collaborative knowledge bases and concluded that the Wiki-
data recommender approach significantly outperforms all evaluated competing systems
(including their own). As such, we consider the Wikidata PropertySuggester as state-of-
the-art.

Unfortunately, the process of association rule mining can result in misleading rules.
Especially due to the spuriousness of the underlying itemset generation, the inability to
find negative association rules, and variations in property densities [3]. As such, impor-
tant information about the context of the mined association rules is lost, leading to
deviations between the true conditional probabilities of property occurrence and their
association rule approximations. While the previously introduced approaches apply dif-
ferent heuristics in order to rank recommendations based on relevant association rules,
they only loosely approximate an ordering based on true likelihoods of the property co-
occurrences. In this work, we investigate how a frequentist approximation of this true
likelihood can improve recommendations.

Recently, Balaraman et al. [6] developed Recoin, a statistical indicator for relative
completeness of individual Wikidata entities. The system can also be repurposed to
propose potentially missing properties based on the class information (only). However,
this cannot take into account other properties of the entity. It will only suggest properties
which a sufficient fraction of other instances of the same class also has. This system has
not been shown to outperform the Wikidata PropertySuggester, which includes both
class membership and property information.

Dessi and Atzori [11] presented an approach applying supervised, feature-based
Machine Learning to Rank algorithms to the task of ranking RDF properties. The app-
roach focuses on flexible personalization of properties’ relevance according to user pref-
erences for specific use cases in a supervised training approach. Given this context, a
direct comparison between this and the other presented approaches is not feasible.

3 http://gerrit.wikimedia.org/r/admin/projects/mediawiki/extensions/PropertySuggester.

http://gerrit.wikimedia.org/r/admin/projects/mediawiki/extensions/PropertySuggester

182 L. C. Gleim et al.

HARE [19] is a generalized approach for ranking triples and entities in RDF graphs,
capable of property recommendation, which is based on random walks in a bi-partite
graph representation. Its scalability to large datasets has however also not been shown,
nor compared to the state-of-the-art.

Razniewski et al. [20] further introduced an approach incorporating human interest-
ingness ratings of properties into the property recommendation process, outperforming
the state-of-the-art with respect to agreement with human interestingness annotations.
The general applicability of the approach is however hindered by the limited availabil-
ity of data on human preferences of individual properties and the fact that knowledge
graphs are not necessarily created to maximize the interestingness of their contents for
humans but often also for algorithmic and specific technical applications.

Next, we introduce our approach for property recommendation in the context of
manual knowledge-base statement authoring, based on maximum-likelihood recom-
mendation directly employing a frequent pattern tree (FP-tree) for efficient probability
computations.

3 SchemaTree: Design and Construction

In this section, we introduce the design and construction of a data structure used for
efficient pattern support lookup. A Knowledge Base (KB) generally consists of entities
with associated properties and values. An entity can have the same property multiple
times and entities in the KB can also have type information4.

Preliminaries. The task of recommending properties is defined as proposing a relevant
property for a given entity, which was previously not attributed to it. In this work, we
limit ourselves to proposing properties with respect to their maximum-likelihood as
determined from a set of training data. Hence, in the scope of this paper, we define the
task of property recommendation as follows:

Definition 1 (Maximum-likelihood Property Recommendation). Given an entity E
with properties S = {s1, . . . ,sn} ⊆ A in a Knowledge Graph KG where A is the set of
all properties of all entities, maximum-likelihood property recommendation is the task
of finding the property â ∈ A\S such that

â= argmax
a∈(A\S)

P(a|{s1, . . . ,sn}) = argmax
a∈(A\S)

P({a,s1, . . . ,sn})
P({s1, . . . ,sn}) (1)

where P({t1, . . . , tm}) is the probability that a randomly selected entity has at least the
properties t1, . . . , tm.

Intuitively, we need to find the property a which is most often observed together with
the properties which the entity already has ({s1, . . . ,sn}). This directly corresponds to
a maximum-likelihood estimation over the true probability distribution P of property
co-occurrences. To obtain k recommendations, this definition can be extended such that
we obtain a list of the k properties which have the highest k maximum-likelihood prob-
abilities, as sorted by that probability.

4 These requirements are fulfilled by both Wikidata and RDF graphs in general.

SchemaTree: Maximum-Likelihood Property Recommendation for Wikidata 183

Given a sufficiently large amount of training data, the true joint probabilities can
be reasonably well approximated by their relative frequency of occurrence, using a fre-
quentist probability interpretation. We borrow the common approach of grouping RDF
triples by subject (i.e. entity in a KB KG) to derive the multiset P of all per subject prop-
erty sets [14,24,25], formally P = {Q|E ∈ KG,Q is the set of properties of E}. Then,
we can determine the absolute frequency (or support count) supp(A) of a set of proper-
ties A = {a1, . . . ,a|A|} ⊆ A (i.e. a pattern) as the number of subject property sets that
include it:

supp(A) = supp(a1, . . . ,a|A|) = |{Q ∈ P|A ⊆ Q}| (2)

Subsequently, we can determine the most likely property recommendation by reformu-
lating Eq. (1) via frequentist inference as:

â � argmax
a∈(A\S)

supp(a,s1, . . . ,sn)
supp(s1, . . . ,sn)

(3)

If we naively computed recommendations according to this definition, it would be
impossible to produce these in a timely manner. This is because creating a recommen-
dation will force us to scan trough the complete dataset, which for a realistically sized
one like Wikidata will already take prohibitively long. Hence, to make the proposed
technique usable, we need efficient lookup of these frequencies. However, given that
the number of possible property combinations for n properties is 2n, it is infeasible to
precompute and store them in a simple lookup table. Hence, we introduce a suitable
data structure which makes it possible to compute them in a short time in the next
subsection.

Construction. To allow for efficient learning, storage, and retrieval of these patterns,
we adapt the trie construction idea of the FP-tree, first introduced by Han et al. [17],
in order to serve as a highly condensed representation of the property sets. We are not
aware of prior work using this approach for frequentist inference. In contrast to common
applications in association rule learning, we do not prune the tree based on minimum
support but retain the full tree. While various optimized and specialized adaptations of
the original FP-tree construction have been proposed in recent years (see, for example,
the comparative study in [21]), we build upon the original 2-pass tree construction to
enable a more transparent analysis of the tree’s properties. Moreover, in order to ensure
deterministic construction of the FP-tree, we do adopt the usage of a support descending
property ordering together with a lexicographic order as proposed by [16]. As the tree
is representing a higher level abstraction of the properties used in the KB, we call this
tree the SchemaTree. Building the tree is done as follows:

1) For each property a ∈ A, determine its support supp(a) in one scan through the
data and cache it. Additionally, create an empty lookup index to maintain a list of
occurrences of each property within the tree, to later allow for efficient traversal of
the tree.

2) Determine a fixed ordering of properties p1, . . . , p|A|, first by descending support
and second by lexicographical ordering lex(pi).

184 L. C. Gleim et al.

3) Construct the prefix tree from all patterns, respectively sorted according to order-
ing p1, . . . , p|A|, by inserting the properties into the tree, starting from the root node
(representing the empty set, contained in all patterns). Each node in the tree main-
tains a counter of its prefix-conditional support (the support for the set of properties
between the root and the node in question) and a backlink to its parent. The root
node thus counts the total number of patterns inserted. Whenever a new child node
is created, it is additionally appended to the list of occurrences of the corresponding
property.

Fig. 1. The SchemaTree derived from the property sets depicted on the right.

Figure 1 illustrates the SchemaTree (left) derived from the example KB of five sub-
jects with their respective property sets (right). Patterns are inserted starting from the
root node at the top. The blue, solid arrows indicate the pattern tree hierarchy, the green,
dashed arrows illustrate the links of the per-property occurrence index, depicted on the
left side. The white numbers on black background denote the prefix-conditional support.
Once this tree is constructed, it can be used to recommend properties.

Maximum-Likelihood Recommendation. The property recommendations for a given
entity with non-empty property set A ⊆ A can be computed using the following proce-
dure:

1) Make a candidate set C = A \A of support counters for possible property recom-
mendations and a support counter for A with respective initial support 0.

2) Sort A using property ordering p1, . . . , p|A| by ascending support to get sorted prop-
erties a1, . . . ,a|A|, i.e. where a1 is the least frequent property.

3) For each occurrence a′
1 of a1 in the SchemaTree (directly retrievable via per-property

occurrence index) with associated support s′1:
a) Check whether the remaining properties in A are contained in the prefix path

(i.e. its ancestors).
b) If yes, increment the support counter of all property candidates contained in the

prefix but not already in A by s
′
1, the support counter of A by s

′
1 and the support

counter of all property candidates that occur as part of the suffix of a′
1 (i.e. its

children) by their respective occurrence support, as registered in the tree.

SchemaTree: Maximum-Likelihood Property Recommendation for Wikidata 185

4) Sort the candidate set by descending support to receive the ranked list of property
recommendations. The respective likelihood approximation of each recommenda-
tion can be obtained as its support divided by the support of A.

The reason all candidates occurring in the prefix of a′
1 are incremented by s′1 in step 3 (b)

and not by their respective individual occurrence support, is that they only occurred s′1-
many times together with the entire pattern A on this branch. Further, note that branches
may be discarded early in step 3 (a) based on the known property ordering. More specifi-
cally, if the currently inspected prefix node has a lower sort order then the next expected
node according to the sorted property set A, the expected property can no longer be
encountered and the branch gets ignored immediately. Hereby, the strategy of checking
prefix containment, starting with properties of minimal overall support, has a higher
selectivity (i.e. specificity or true negative rate) then starting the search from the most
likely properties at the root and is thus expected to lead to earlier search terminations.

Suppose we want to make property suggestions for an entity with properties A =
p2, p3, based on pi as in the SchemaTree depicted in Fig. 1. Ordering reveals p3 to
be the least frequent property. Inspection of the per-property occurrence index of p3

reveals two occurrences in the tree, pl3 (left) and pr3 (right). Since the prefix of pl3 does
contain p2, the support counters of p1 (only candidate in the prefix) and A (i.e. the set
support counter) are incremented by 2 (the support of pl3). The suffixes of pl3 lead to
the respective incrementation of support counters of p4, p5 and p6 by their respective
occurrence support of 1. Inspection of the prefix of pr3 reveals that p2 is also contained
in its prefix, leading us to incremented A by 1 (the support of pr3). Since no other candi-
dates are part of the prefix, we can directly continue with the suffix p4, whose support
counter is accordingly incremented by 1. Sorting of the candidate list and division by the
support of A results in the final list of recommendations: p1 and p4 (2/3 � 66,67% like-
lihood each) and p5 and p6 (1/3 � 33,33% likelihood each). Note that we can further
deduct that all other properties are unlikely to co-occur with the given set of properties.
Depending on the application this knowledge may also have significant value by itself,
e.g. in the context of data quality estimation. As such, the approach is also capable of
capturing negative relationships, i.e. associations, between properties.

Employing Classifying Properties. The recommendation precision is expected to be
limited by a lack of context information when only a small set of existing properties are
provided as input to the recommender. This is especially true when these few properties
are themselves rather common, since they occur together with a large number of other
properties. To improve the recommender’s precision in such cases, type information is
integrated into the SchemaTree by employing the concept of classifying properties as
implemented by the Wikidata PropertySuggester. [25] As such, any value of a classi-
fying property can be considered a type. Correspondingly, any value of an instanceOf
property (Property:P31) is a type in the sense of the Wikidata data model and can be
extracted as such. Equivalently, it is possible to use e.g. the DBpedia type property or
RDF type for generic RDF datasets.

To build the SchemaTree, we treat types as additional properties: In the first scan, we
count the frequencies of properties as well as types. We create a strict totally ordered set
including properties and types – again ordered first by descending support and second

https://www.wikidata.org/wiki/Property:P31
http://dbpedia.org/ontology/type
https://www.w3.org/1999/02/22-rdf-syntax-ns#type

186 L. C. Gleim et al.

by lexicographical order – and redefine the per subject property set as the ordered set of
all corresponding properties and types. During the second pass, we insert all subjects’
property sets (now including types) into the SchemaTree.

In the recommendation algorithm, we search for paths in the tree that contain both
all properties and all types of the provided input set. When the list of recommendations
is created, only properties (not types) are considered as possible candidates. Note that
this makes it also possible to recommend properties for an entity that only has class
information and that this approach could also be used to recommend suitable additional
types for a provided input set.

Employing Backoff Strategies. Association rule-based approaches excel at generaliz-
ing to property sets not encountered in the training set, due to the typically small size
of any given rule’s precondition item set. The SchemaTree recommender, however, by
default often fails to provide recommendations in this case, since the required lookup
of the support of the provided input set and its super-sets will not return any results. To
give an example, suppose that we want to compute recommendations for the input set
{p1, p2, p3, p4}, given the SchemaTree depicted in Fig. 1, then p4 is the property with
the lowest support and therefore the starting point for the recommender. Only the left-
most p4 node of the SchemaTree meets the condition that properties p1, p2, p3 are on
the path from p4 to the root, so that this is the only node we regard. Unfortunately, there
is no other property on that path, neither as predecessor nor successor. Therefore, the
recommender does not recommend any new property to the set. Similarly, large input
sets generally correlate to fewer corresponding examples in the training set and thus
to tendentially less reliable recommendations of the SchemaTree recommender, while
association rule-based approaches generally remain unaffected by this issue and rather
suffer from the challenge of combining the tendentially many applicable association
rules into a comprehensive property ranking.

In order to address these border cases, we designed two backoff strategies, which
either reduce the set of employed input properties or split it into multiple input sets:

SplitPropertySet. Splits the input property set into two smaller input sets:
1) Sort incoming properties according to the global property support ordering

p1, . . . , p|A| of the SchemaTree.
2) Split the ordered property set P into 2 subsets P′

1 and P′
2 (P

′
1 ∪P′

2 = P).
We consider two ways to perform splitting of ordered property set P:
a) Every Second Item. The items are split in the sets such that each item in

even position in the sorted set P comes in P1, the others in P2.
b) Two Frequency Ranges. The first half of sorted set P is put in P1, the last

half in P2.
3) Perform recommendation on both subsets in parallel, obtaining two recommen-

dations R′
1 and R′

2.
4) Delete those properties from the recommendations which were in the other input

property subset resulting in cleaned recommendations R1 and R2.
5) Merge recommendation R1 and R2 to for the recommendation R, which is finally

returned as result of the backoff strategy. This we do, by either taking the
maximum or the average of the two probabilities per individual recommended
property.

SchemaTree: Maximum-Likelihood Property Recommendation for Wikidata 187

DeleteLowFrequency. Reduces the size of the input property set by removing a vary-
ing number of properties with lowest support and computing recommendations for
multiple such reduced input sets in parallel. In the end, one of these resulting sets of
recommendations is selected. the procedure goes as follows:
1) Sort incoming properties according to the global property support ordering

p1, . . . , p|A| of the SchemaTree.
2) Create q subsets Pi, i ∈ [q] by deleting the d(i) least frequent items from the

original input set P. Here, d(i) determines the number of low frequent properties
deleted form P in run i, we discuss options below.

3) Run the recommender on the subsets in parallel, obtaining recommendations
sets Ri.

4) Choose the recommendation Ri with the least number of deleted properties
which does no longer trigger a backoff condition.

5) Delete any recommendation already contained in the original input set P and
return the remaining recommendations as the final result. We consider two pos-
sible ways to define the number of least frequent properties d(i), which are
deleted from P in run i ∈ [p]:
a) Linear Stepsize dL(i) = i, i.e. set Pi does not contain the least i properties.

i.e. with every further parallel execution we remove one more item from the
property set.

b) Proportional Stepsize dP(i) = a∗n∗ i
q ,0 ≤ a ≤ 1. Here, n is the number of

properties in P, a the largest fraction we want to remove, and q the number
of runs. So, we remove up to a fraction a of the properties in q equally large
steps.

The linear approach may result in many parallel executions of the recommender in
cases where multiple properties have to be erased until no backoff condition are trig-
gered anymore. In contrast, the proportional approach covers a wider range of input set
reductions with fewer parallel executions at the cost of a less tight stepsize function,
possibly deleting too many properties to find a condition satisfying recommendation,
negatively impacting the recommender’s precision.

We consider two backoff conditions to trigger the invocation of a backoff strategy:

a) TooFewRecommendations. A minimum threshold T1 for the number of returned
properties of the standard recommender.

b) TooUnlikelyRecommendations. A minimum threshold T2 for the average probability
of the top 10 recommendations returned by the standard recommender.

4 Evaluation

This section describes the conducted evaluation procedures and their respective results
with respect to the performance and quality of the recommender. Furthermore, the effect
of the proposed aggregation strategies and metrics will be demonstrated.

The described approach was implemented5 using Golang for usage with arbitrary
RDF datasets and evaluations were conducted on a machine with Intel Core i7 8700k

5 https://github.com/lgleim/SchemaTreeRecommender.

https://github.com/lgleim/SchemaTreeRecommender

188 L. C. Gleim et al.

processor (6 × 3, 7 GHz, Hyper-threading enabled) and 64 GB of RAM. Note, however,
that for the SchemaTree approach much less RAM would have been sufficient since
the entire in-memory SchemaTree for the Wikidata dataset uses less then 1.3 GB of
RAM. Further, the two-pass creation of the SchemaTree for this dataset takes about
20 min in total, whereas the runtime is largely dominated by disk IO and dataset
decompression.

Dataset and Preparation. In order to evaluate the different variants of the Schema-
Tree recommender and compare its performance to the state-of-the-art Wikidata Prop-
ertySuggester, we employ the full Dumps of Wikidata as of July 29th, 20196. We split
the dataset into training set (99.9% = 58810044 of the subjects in the dataset) and test
set (0.1% = 58868 of the subjects in the dataset) by splitting off every 1000th subject
off into the test- and all others into the training set. The training set is then used to con-
struct the SchemaTree, while the test set is used to measure performance. For technical
reasons, the full Wikidata PropertySuggester association rules were generated from the
full dataset, theoretically giving that system an unfair performance advantage, due to
test data being part of its training process. However, as we will see later, even this addi-
tional advantage does not make it outperform the proposed approach. All recommenders
are subsequently evaluated using the same test set.

Evaluation Procedure. To evaluate we use the procedure proposed by Zangerle
et al. [25]. For each evaluated entity, we gather its full set of properties, order the prop-
erties by descending support in the training set, and split it into two subsets: the input
set and the left-out set. Then, we call the recommender on the input set and evaluate
how well it performs at recommending the very same properties that were initially left
out. We start with an input set that contains all properties and repeatedly remove the
least frequent non-type property in the input set, adding it to the left-out set. On each
step, we run an evaluation with the current pair of input and left-out sets. This process
is repeated as long as any non-type properties exist in the input set.

Recommender systems capable of employing type information will receive the
entity types as additional context in their input set, while the other systems are eval-
uated without this additional information. Each evaluation run requires that both the
input and left-out sets are non-empty.

The results are grouped by the amount of non-type properties in the input sets and
left-out sets. This aggregation will guarantee that each entity will belong to the same
group across evaluation runs with all models, whether the model uses the additional type
properties or not. Ensuring that entities always belong to the same grouping, irrespective
of the recommender system used, eases the direct comparison of the different model
performances.

Metrics. In order to evaluate the quality of the computed recommendations we employ
the following metrics, which are respectively computed for each group of entities:

6 https://dumps.wikimedia.org/wikidatawiki/entities/20190729/.

https://dumps.wikimedia.org/wikidatawiki/entities/20190729/

SchemaTree: Maximum-Likelihood Property Recommendation for Wikidata 189

– ØRank: The average position of the first correct recommendation in the top-most 500
recommendations, respectively incurring 500 if not contained.

– Stddev: The standard deviation of the ranks.
– Prec@L: The average precision considering only the first L recommendations, i.e.,

the ratio of relevant properties found regarding only the first L recommendations to
L, where L equals the number of left-outs in each individual run of the recommender.

– TopX: The percentage of all conducted recommendations, where the first correct
result was contained in the top X recommendations, where TopL employs X equal
to the number of left-outs L in each individual run of the recommender.

– ØLatency: The average time until the list of recommendations was received over all
recommender calls in milliseconds.

– Recall: The average number of properties that could be found in the recommenda-
tions list, divided by the total number of left-out properties.

– Modified F1: The harmonic mean of Prec@L and Recall, with an optimal value of
1 (perfect precision and recall) and worst of 0.

Choosing a Backoff Strategy. The large number of possible configuration options,
resulting from the different backoff conditions, strategies and parameters introduced in
Sect. 3, motivates a preparatory empirical evaluation of different backoff configurations.
The control variables include merger and splitter strategies inside the SplitPropertySet
backoff strategy (c.f. Sect. 3), as well as several options to choose a stepsize function
and the number of parallel executions inside the DeleteLowFrequency backoff strategy
(c.f. Sect. 3). Additionally, it is necessary to set trigger thresholds for the backoff condi-
tions, which can be combined arbitrarily with any backoff strategy above.

To find a good selection of parameters and a suiting combination of condition and
backoff strategy, we perform a grid search in which we evaluate 96 different configu-
rations, using the procedure described in Sect. 4 in conjunction with every 10th subject
of the test set described in Sect. 4 and metrics computed over all conducted recommen-
dations. We chose different parameters for each condition and backoff strategy by com-
bining the different backoff strategies (depicted in the upper sub-table of Table 1) with
the different combinations of the condition configurations (depicted in the lower sub-
table of Table 1). We choose a= 0.4 as parameter for the linear Delete Low Frequency
Backoff Strategy.

Table 1. Tested combinations of workflow configurations.

Backoff strategy Variable Configuration variants

Split property set Splitter Every second item, two frequency ranges

Merger avg, max

Delete low frequency Stepsize Linear, proportional

Parallel runs {1,..,6}
Backoff condition Variable Configuration variants

TooFewRecommendations Threshold {1, 2, 3}
TooUnlikelyRecommendations Threshold {0.033, 0.066, 0.1}

190 L. C. Gleim et al.

Fig. 2. Comparison of 96 different backoff configurations (c.f. Table 1) w.r.t. their modified F1

score. Higher is better. The six subplots compare the six principal backoff strategy configurations
outlined in Sect. 3. Sample color indicates the employed backoff condition and the position on the
respective y-axis the associated backoff threshold. TooUnlikelyRecommondations thresholds are
scaled by factor three for better visual comparability. The number markers indicated the respec-
tive number of parallel recommender runs. The best performing strategy is highlighted in red.
The F1 score for the system without any backoff startegy is 71.52%.

The evaluation results of all 96 configurations w.r.t. their modified F1 score are illus-
trated in Fig. 2. First, we observe that any backoff strategy significantly improves the
system as without any we obtained an F1 score of 71.52% while all backoff strategies
result in more than 80.2%. Comparing the two backoff conditions TooFewRecommenda-
tions and TooUnlikelyRecommendations, the superior performance of the TooFewRec-
ommendations strategy is immediately obvious. Comparing the different backoff strate-
gies, we see that the DeleteLowFrequency approach with a linear stepsize function per-
formed clearly worst and only reaches comparably better results at the cost of multiple
parallel executions. This is likely a direct result of removing an insufficient amount
of properties from the initial property set to observe the desired backoff characteris-
tic. In contrast, the DeleteLowFrequency strategy with proportional stepsize function
achieves much better results, likely because a more optimal, larger amount of proper-
ties is left out of the input set compared to the linear stepsize function. In comparison
to the DeleteLowFrequency approach, the SplitPropertySet backoff strategy generally
appears to achieve higher recall, which intuitively makes sense, due to the fact that no
properties providing context are deleted from the effective input to the recommender
system. The respective average merging strategy appears to performs slightly better in
most cases then taking the maximum per item probability across the splits.

Concluding, we choose the SplitPropertySet backoff approach in conjunction with
everySecondItem splitter and average merging strategy, triggered by the TooFewRecom-
mendations condition with threshold 1, which maximized the modified F1 score over
all evaluated strategies.

Evaluation Results. In order to compare the different variants of the SchemaTree rec-
ommender with the state-of-the-art Wikidata PropertySuggester (PS) system, we evalu-
ated each system using the procedure described in Sect. 4. We first discuss the overall

SchemaTree: Maximum-Likelihood Property Recommendation for Wikidata 191

evaluation results as summarized in Table 2, before examining selected metrics in more
detail for different input property set sizes.

All three variants of the SchemaTree recommender (Standard, with type information
and with both type information and backoff strategies enabled) clearly outperform the
state-of-the-art in terms of ØRank of the first correct recommendation. Additionally the
Stddev of that rank is significantly lower, leading to more predictable recommendation
results. When comparing only systems with or without usage of type information, the
SchemaTree recommender consistently achieves higher Prec@L, F1 and TopX scores, as
well as lower average recommendation ØLatency. It thus outperforms the state-of-the-
art Wikidata PropertySuggester in every evaluated metric, at the cost of about 1.3 GB
of RAM for keeping the SchemaTree data structure in RAM.

With a relative reduction of 71% compared to the PropertySuggester baseline, the
average rank of the first correct recommended property for the Typed & Backoff app-
roach improves significantly, which directly results in an improved user experience.
Note also that the Typed & Backoff method leads to relative improvement of 44.83% of
the average rank of the first correct property recommendation over the simpler Typed
approach and a 7.54% relative improvement of correct Top10 results, which in turn
means that users will actually see relevant recommendations significantly more often.

Table 2. Benchmark results of the evaluated systems. At the top, we have the PropertySuggester,
first without and second with type information for comparison. The three systems at the bottom
are the variations of the SchemaTree recommender.

Recommender ØRank Stddev Prec@L F1 Top1 Top5 Top10 TopL ØLatency

PS wo/ Types 156.67 179.04 3.31% 6.26% 3.83% 10.15% 12.64% 10.97% 350.58 ms

Wikidata PS 13.05 70.84 64.57% 76.83% 74.34% 90.11% 93.28% 83.65% 29.18 ms

Standard 8.00 40.43 56.48% 71.87% 67.14% 83.38% 89.76% 77.64% 119.66 ms

Typed 6.73 46.25 67.90% 80.49% 78.97% 93.07% 96.02% 87.16% 25.01ms

Typed & Backoff 3.78 24.38 68.00% 80.76% 79.07% 93.30% 96.32% 87.40% 25.73 ms

To provide a more detailed breakdown of the performance characteristics, we drill
down into the results of the metrics Top5, ØRank and modified F1 score and inspect
each measure in relation to their respective input set sizes to the recommender systems.
Figure 3(a) illustrates the distribution of the respective input set sizes. Note that all fol-
lowing figures depict results for property set sizes of 2 to 55 non-type input parameters.
Whereas the lower limit 2 directly results from the requirement to have non-empty input-
and left-out sets for the evaluation, the upper limit 55 is selected because of the limited
amount of subjects with corresponding larger set size in the test set and the resulting
reduced reliability of the evaluation results.

When comparing the Top5 results, depicted in Fig. 3(b), the PropertySuggester with-
out provided type information (PS wo/ Types) only achieves a low sub-40% Top5 score
throughout the entire test set. In comparison, the Standard SchemaTree already results
in a significant performance gain, reaching its peak of close to 90% at around 13 input
properties, sustaining a score of about 80% as more properties are added to the input
set.

192 L. C. Gleim et al.

The introduction of typing information favours both the PropertySuggester and
the SchemaTree, as seen in the results obtained by Wikidata PS and Typed. As antic-
ipated in Sect. 3, the typing information significantly boosts recommendation perfor-
mance when only a limited amount of input properties is provided to the recommender.
Effectively, the Top5 score of the Typed SchemaTree recommender rises by up to more
than 75% absolute compared to its untyped Standard counterpart. As more and more
properties exist on an entity, type information plays a less important role as properties
become more specialized and the existing input properties provide more context infor-
mation. Notably, the SchemaTree (without type information) outperforms the Property-
Suggester (with type information) on recalling left-out properties, especially after the
15 properties mark.

While the effect of introducing backoff strategies can be seen in Fig. 3(b) in the
general slight performance improvement of the Typed & Backoff recommender w.r.t. to
the Typed SchemaTree, its effect is more obvious when inspecting the ØRank of the first
correct recommendation in Fig. 3(c). While all characteristics of the different systems
described w.r.t. the Top5 score can also be observed for the ØRank, it is clearly visible
how the introduction of backoff improves the recommendation especially for larger
input set sizes. Better recommendations are especially given for entities that are already
rather complete. Due to the backoff, properties that co-occur with a subset of the given
input can also be recommended, whereas without it only recommends properties that co-
occurred with the complete input in the training data. As such, the backoff mechanism
clearly fulfills its intended behaviour, as described in Sect. 3. As explained there, the
performance degradation of the Wikidata PS likely stems from error accumulation when
combining the confidence scores of the potentially many applicable association rules,
compared to the frequentist inference approach of the SchemaTree recommender.

Finally, we examine the modified F1 score (Fig. 3(d)) as a measure of the overall
quality of the recommendations with varying degrees of left-out properties. Highlight-
ing only the SchemaTree variants, we see a clear confirmation of our previous findings,

0

1000

2000

3000

4000

co
un

t

(a) Distribution of non-type input property set sizes.

0

20

40

60

80

100

to
p5

(b) Top5 score per recommender system. Higher is better.

10 20 30 40 50
numNonTypes

0

100

200

300

400

m
ea
n

(c) ØRank of first correct recommendation. Lower is better.

10 20 30 40 50
numNonTypes

0

20

40

60

80

f1

(d) Modified F1 score per recommender system. Higher is better.

Input Set
Frequency

Recommender
Standard
Typed
Typed & Backoff
Wikidata PS
PS wo/ Types

Fig. 3. Detailed results of the recommender system evaluation for different non-type input set
sizes.

SchemaTree: Maximum-Likelihood Property Recommendation for Wikidata 193

that type information improves the recommendation quality especially for low numbers
of input properties. The incorporation of backoff strategies, on the other hand, only
seems to have a slight positive impact with regards to this metric.

Overall, the proposed approach tends to recommend properties that are more contex-
tually relevant (since it can take more context information into account). The Wikidata
PropertySuggester, however, can only recommend contextually relevant properties as
long as there are meaningful association rules.

5 Conclusion and Future Work

In this work, we introduced a trie-based data structure, capable of efficiently learning
and representing property set coocurrence frequencies in RDF graphs. We refer to this
data structure as the SchemaTree. We have shown how to use it to efficiently com-
pute the support count of arbitrary property sets in the encoded graph and how it can
be employed for maximum-likelihood property recommendation to assist in the man-
ual creation of knowledge graphs, analogously to the Wikidata PropertySuggester. We
showed how to improve recall and precision of the recommender system for entities
with sparse property sets by incorporating type information from classifying properties
into the recommender system. We then presented different novel backoff strategies to
improve the capability of the recommender to generalize to unseen property combina-
tions, further improving upon the state-of-the-art, and evaluated the approaches on the
Wikidata dataset. We evaluated the performance of different backoff configurations and
compared the resulting variations of the SchemaTree property recommender to the state-
of-the-art Wikidata PropertySuggester system, demonstrating that our system clearly
outperforms the state-of-the-art in all evaluated metrics. Finally, we provided qualita-
tive reasoning as to the limitations of the popular association-rule based recommender
systems and how our system overcomes them, as well as advantages and drawbacks of
the approach.

One current limitation of this and other existing works is that qualifiers are not taken
into account, nor predicted, providing additional directions for further investigations.
Further, while we have shown that the presented backoff strategies already significantly
improve the performance of the presented recommender, we want to investigate further
backoff strategies in future work. Additional theoretical understanding of the current
backoff approaches will likely lead to further improvements. To gain this understanding,
one would also want to have experimental evidence on how the recommender works for
rare properties in heterogeneous graphs.

Further aspects for future work include the inclusion of the values of properties
into the property recommendations; one can assume that these also have additional
information that can indicate relevance (e.g., typically only people born after 1900 have
a personal homepage). Besides, one could also investigate the prediction of values for
the properties.

However, due to the combinatorial explosion of options, these are not feasible with
the current approach alone (when employing the same approach currently used for clas-
sifying properties). For value prediction, if only a small amount of values are possible
for a given property, one could attempt to adapt the SchemaTree approach separately for

194 L. C. Gleim et al.

each specific property. For more involved cases, recommending values could be done
in a second stage with a different algorithm. Note that value recommendation would
also need to work for effectively infinite and/or continuous domains (e.g., floating point
numbers), while the current approach only chooses from a finite set of discrete options.

Besides improving the quality of the recommendations themselves, we see also
a need fur improving how they are presented to the user. For example, some recom-
mended properties are closely related to each other and presenting them in some sort
of clustered or hierarchical form might lead to a better user experience. Further, the
conducted evaluation is an attempt to mimic the manual entity authoring process (anal-
ogously to evaluations in previous work), we envision a future user study to validate
our findings in practice.

References

1. Abedjan, Z., Naumann, F.: Improving RDF data through association rule mining. Datenbank-
Spektrum 13(2), 111–120 (2013). https://doi.org/10.1007/s13222-013-0126-x

2. Abedjan, Z., Naumann, F.: Amending RDF entities with new facts. In: Presutti, V.,
Blomqvist, E., Troncy, R., Sack, H., Papadakis, I., Tordai, A. (eds.) ESWC 2014. LNCS,
vol. 8798, pp. 131–143. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11955-
7 11

3. Aggarwal, C.C., Philip, S.Y.: A new framework for itemset generation. In: Proceedings of
the 17th Symposium on Principles of Database Systems, pp. 18–24 (1998)

4. Agrawal, R., Srikant, R., et al.: Fast algorithms for mining association rules. In: Proceedings
of the 20th International Conference on Very Large Data Bases, VLDB, vol. 1215, pp. 487–
499 (1994)

5. Alonso, O., Kumar, A.: System and method for search and recommendation based on usage
mining, US Patent 7,092,936, 15 August 2006

6. Balaraman, V., Razniewski, S., Nutt, W.: Recoin: relative completeness in Wikidata. In: Com-
panion Proceedings of the Web Conference, pp. 1787–1792 (2018)

7. Bauer, F., Kaltenböck, M.: Linked open data: the essentials. In: A Quick Start Guide for
Decision Makers, January 2012

8. Berners-Lee, T., Hendler, J., Lassila, O., et al.: The semantic web. Sci. Am. 284(5), 28–37
(2001)

9. Buneman, P.: Semistructured data. In: Proceedings of the 16th Symposium on Principles of
Database Systems, pp. 117–121. ACM (1997)

10. Cafarella, M.J., Halevy, A., Wang, D.Z., Wu, E., Zhang, Y.: WebTables: exploring the power
of tables on the web. Proc. VLDB Endowment 1(1), 538–549 (2008)

11. Dessi, A., Atzori, M.: A machine-learning approach to ranking RDF properties. Future Gener.
Comput. Syst. 54, 366–377 (2016)

12. Fernández, J.D., Beek, W., Martı́nez-Prieto, M.A., Arias, M.: LOD-a-lot. In: d’Amato, C.,
et al. (eds.) ISWC 2017. LNCS, vol. 10588, pp. 75–83. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-68204-4 7

13. Gassler, W., Zangerle, E., Specht, G.: Guided curation of semistructured data in
collaboratively-built knowledge bases. Future Gener Comput. Syst. 31, 111–119 (2014)

14. Gleim, L.C., et al.: Schema extraction for privacy preserving processing of sensitive data. In:
Joint Proceedings of the MEPDaW, SeWeBMeDA and SWeTI 2018, pp. 36–47. CEUR WS
Proceedings, vol. 2112 (2018)

15. Guha, R.V., Brickley, D., Macbeth, S.: Schema.org: evolution of structured data on the web.
Commun. ACM 59(2), 44–51 (2016)

https://doi.org/10.1007/s13222-013-0126-x
https://doi.org/10.1007/978-3-319-11955-7_11
https://doi.org/10.1007/978-3-319-11955-7_11
https://doi.org/10.1007/978-3-319-68204-4_7
https://doi.org/10.1007/978-3-319-68204-4_7

SchemaTree: Maximum-Likelihood Property Recommendation for Wikidata 195

16. Gyorodi, C., Gyorodi, R., Cofeey, T., Holban, S.: Mining association rules using Dynamic
FP-trees. In: Proceedings of the Irish Signals and Systems Conference, pp. 76–81 (2003)

17. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. ACM SIG-
MOD Rec. 29, 1–12 (2000)

18. Lee, T., Wang, Z., Wang, H., Hwang, S.W.: Attribute extraction and scoring: a probabilis-
tic approach. In: 29th International Conference on Data Engineering (ICDE), pp. 194–205.
IEEE (2013)

19. Ngomo, N., Hoffmann, M., Usbeck, R., Jha, K., et al.: Holistic and scalable ranking of RDF
data. In: International Conference on Big Data, pp. 746–755. IEEE (2017)

20. Razniewski, S., Balaraman, V., Nutt, W.: Doctoral advisor or medical condition: towards
entity-specific rankings of knowledge base properties. In: Cong, G., Peng, W.-C., Zhang,
W.E., Li, C., Sun, A. (eds.) ADMA 2017. LNCS (LNAI), vol. 10604, pp. 526–540. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-69179-4 37

21. Said, A.M., Dominic, P., Abdullah, A.B.: A comparative study of FP-growth variations. Int.
J. Comput. Sci. Netw. Secur. 9(5), 266–272 (2009)

22. Sigurbjörnsson, B., Van Zwol, R.: Flickr tag recommendation based on collective knowledge.
In: Proceedings of the 17th International Conference on World Wide Web, pp. 327–336.
ACM (2008)

23. Suen, C.Y., Shinghal, R.: Operational Expert System Applications in Canada. Elsevier, Ams-
terdam (2014)

24. Völker, J., Niepert, M.: Statistical schema induction. In: Antoniou, G., et al. (eds.) ESWC
2011. LNCS, vol. 6643, pp. 124–138. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-21034-1 9

25. Zangerle, E., Gassler, W., Pichl, M., Steinhauser, S., Specht, G.: An empirical evaluation
of property recommender systems for Wikidata and collaborative knowledge bases. In: Pro-
ceedings of the 12th International Symposium on Open Collaboration, p. 18. ACM (2016)

26. Zangerle, E., Gassler, W., Specht, G.: Recommending structure in collaborative semistruc-
tured information systems. In: Proceedings of the 4th Conference on Recommender Systems,
pp. 261–264. ACM (2010)

https://doi.org/10.1007/978-3-319-69179-4_37
https://doi.org/10.1007/978-3-642-21034-1_9
https://doi.org/10.1007/978-3-642-21034-1_9

	SchemaTree: Maximum-Likelihood Property Recommendation for Wikidata
	1 Introduction
	2 Related Work
	3 SchemaTree: Design and Construction
	4 Evaluation
	5 Conclusion and Future Work
	References

